Integrable Hamiltonian Systems with Vector Potentials

نویسندگان

  • Giuseppe Pucacco
  • Kjell Rosquist
چکیده

We investigate integrable 2-dimensional Hamiltonian systems with scalar and vector potentials, admitting second invariants which are linear or quadratic in the momenta. In the case of a linear second invariant, we provide some examples of weakly-integrable systems. In the case of a quadratic second invariant, we recover the classical strongly-integrable systems in Cartesian and polar coordinates and provide some new examples of integrable systems in parabolic and elliptical coordinates. Submitted to Journal of Math. Phys. on May 26, 2004 e-mail: [email protected] e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finiteness of integrable n-dimensional homogeneous polynomial potentials

We consider natural Hamiltonian systems of n > 1 degrees of freedom with polynomial homogeneous potentials of degree k. We show that under a genericity assumption, for a fixed k, at most only a finite number of such systems is integrable. We also explain how to find explicit forms of these integrable potentials for small k.

متن کامل

The Last Integrable Case of Kozlov-treshchev Birkhoff Integrable Potentials

The integrability of this system was conjectured in [16] and in the book of V.V. Kozlov [17]. This system appears first in the classification of Birkhoff integrable systems by Kozlov and Treshchev [16]. The classification involves systems with exponential interraction with sufficient number of integrals, polynomial in the momenta. The classification gives necessary conditions for a system with ...

متن کامل

Lower-dimensional invariant tori for perturbations of a class of non-convex Hamiltonian functions

We consider a class of quasi-integrable Hamiltonian systems obtained by adding to a nonconvex Hamiltonian function of an integrable system a perturbation depending only on the angle variables. We focus on a resonant maximal torus of the unperturbed system, foliated into a family of lower-dimensional tori of codimension 1, invariant under a quasi-periodic flow with rotation vector satisfying som...

متن کامل

Multi-lagrangians for Integrable Systems

PACS numbers: 11.10.Ef 02.30.Wd 02.30.Jr 03.40.Gc Abstract We propose a general scheme to construct multiple Lagrangians for completely integrable non-linear evolution equations that admit multi-Hamiltonian structure. The recursion operator plays a fundamental role in this construction. We use a conserved quantity higher/lower than the Hamiltonian in the potential part of the new Lagrangian and...

متن کامل

Compatible Dubrovin–Novikov Hamiltonian operators, Lie derivative and integrable systems of hydrodynamic type

1 (Dubrovin–Novikov Hamiltonian operator [1]) is compatible with a nondegenerate local Hamiltonian operator of hydrodynamic type K 2 if and only if the operator K 1 is locally the Lie derivative of the operator K 2 along a vector field in the corresponding domain of local coordinates. This result gives, first of all, a convenient general invariant criterion of the compatibility for the Dubrovin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004